- 1. Free electron gas in two dimensions.
 - (a) What is the relation between the electron density n and k_F in two dimensions?
 - (b) Derive the density of states $D(\epsilon)$.
 - (c) What is the relation between the chemical potential μ and the Fermi energy E_F ?
- 2. Deduce the temperature dependence of the chemical potential at low temperatures discussed in class.

 $\mu \approx \epsilon_F \left[1 - \frac{1}{3} \left(\frac{\pi k_B T}{2\epsilon_F} \right)^2 \right]$

3. Thermodynamics of the free electron gas (Read Problem A&M 2.2)] Deduce the following relations for entropy density s=S/V and pressure P of the free electron gas using the thermodynamic identities

$$c_v = \left(\frac{\partial u}{\partial T}\right)_n = T\left(\frac{\partial s}{\partial T}\right)_n$$

(a)
$$s = -k_B \int \frac{dk}{4\pi_3} \left[f \ln f + (1 - f) \ln(1 - f) \right]$$

(b)
$$P = k_B T \int \frac{dk}{4\pi_3} ln \left(1 + exp \left[-\frac{(\hbar^2 k^2/2m) - \mu}{k_B T} \right] \right)$$