Problem Set #3, 12/10/2013,

1. Silver is FCC, a=4.09A. A diffractometer tracing of the powder pattern of silver at 27C is made using MoK_a radiation. Let f be the atomic scattering factor, and the LP is the Lorentz-polarization factor. Numbers proportional to the peak areas divided by $f^2(LP)$ are as follows.

hkl	331	422	531	
A/ f²(LP)	3.15	2.83	4.45	

- A) From these data determine 2B for silver at 27C. The quantity 2B is defined by $2M=2B(\sin q/1)^2$
- B) From the Debye temperature for silver Θ =210C, calculate 2B for silver at 27C.
- C) By what fraction is the integrated intensity of the (531) reflection reduced by the temperature factor at 27C?
- D) What is the root mean square component of displacement $\langle u_s^2 \rangle^{1/2}$ in silver at 27C?
- E) What is the ratio of $\langle u_s^2 \rangle^{1/2}$ at 27C to the nearest neighbor distance in silver?
- 2. In the zinc blend type structure, α positions are at 000, 1/2 1/2 0, 1/2 0 1/2, 0 1/2 1/2, and β positions are 1/4 1/4 1/4, 3/4 3/4 1/4, 3/4 1/4 3/4, 1/4 3/4 3/4. Assume a nonstoichiometric composition x_a , x_b , and partial long-range order S
 - a) In terms of fa, fb xa xb, and S, deduce expressions for F2 for h+k+l= odd, h+k+l=2(2n+1), h+k+l=4n.
 - b) If x_a =0.60, x_b =0.40 what is the maximum possible value of S? If x_a =0.60, x_b =0.40, and S=0.70, what fraction of the α -positions are correctly occupied?